Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

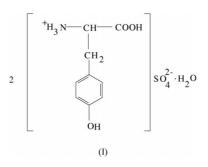
B. Sridhar,^a N. Srinivasan^b and R. K. Rajaram^a*

^aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India., and ^bDepartment of Physics, Thiagarajar College, Madurai 625 009, India.

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å Disorder in solvent or counterion R factor = 0.030 wR factor = 0.084 Data-to-parameter ratio = 8.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

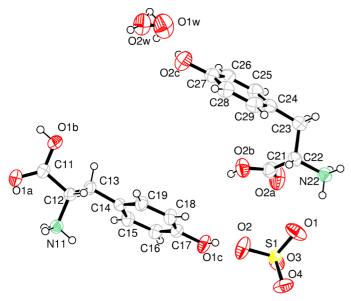
Bis(L-tyrosinium) sulfate monohydrate

In the title compound, $2C_9H_{12}NO_3^+\cdot SO_4^{2-}\cdot H_2O$, the sulfate anion is linked to the tyrosinium residue 1 by a strong O– $H \cdot \cdot \cdot O$ hydrogen bond, while tyrosinium residue 2 forms a relatively strong O– $H \cdot \cdot \cdot O$ hydrogen bond with the terminal hydroxyl O atom, O^{η} , resulting in a hydrogen-bonded helical structure around the *b* axis. A zigzag (*Z*1) head-to-tail sequence is observed in residue 2. Ribbons of tyrosinium residues parallel to the *a* axis are interconnected by sulfate anions and disordered water molecules in a three-dimensional network. The disordered water molecule links the sulfate anion and tyrosinium residue as a chain running along the *b* axis.

Comment

The crystal structures of L-tyrosine hydrobromide (Srinivasan, 1956), L-3,4-dihydroxyphenylalanine (Mostad *et al.*, 1971), L-tyrosine (Mostad *et al.*, 1972), DL-tyrosine (Mostad & Rømming, 1973), L-tyrosine hydrochloride (Frey *et al.*, 1973) and *O*-tyrosine (Mostad *et al.*, 1975) have been reported. In the present study, the crystal structure of L-tyrosine recrystallized from sulfuric acid was determined, namely bis(L-tyros inium) sulfate monohydrate, (I).

The asymmetric unit of the crystal structure contains two cystallographically independent tyrosinium residues, one sulfate anion and a water molecule. The backbone conformation angles ψ^1 for tyrosinium residues 1 and 2 are -2.0 (4) and -28.2 (4)°, respectively. This tendency for the C–N bond to twist is found in various amino acids (Lakshminarayanan *et al.*, 1967). The branched side-chain conformation angle χ^1 is in the *gauche*-II form [-71.6 (3)°] for residue 1, while residue 2 is in the *trans* form [176.4 (3)°]. Interestingly, residue 1 adopts the sterically most favourable 'open conformation I', while residue 2 adopts 'open conformation II' (Bhat & Vijayan, 1978).


The conformation angles χ^{21} and χ^{22} are 133.1 (3) and -53.4 (3)° and -110.1 (3) and 67.1 (4)° for residues 1 and 2,

Received 7 January 2002 Accepted 21 January 2002 Online 31 January 2002

Acta Cryst. (2002). E58, o211-o214

Printed in Great Britain - all rights reserved

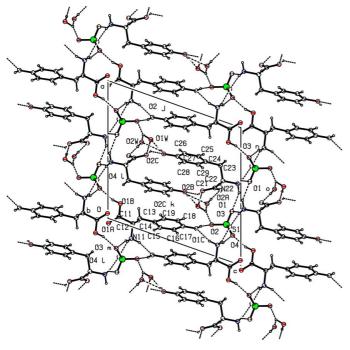

© 2002 International Union of Crystallography

Figure 1 *ORTEPII* (Johnson, 1976) drawing of the title compound, with the atomic numbering scheme and 50% probability displacement ellipsoids.

respectively. These χ^{21} values lie within the expected range of $90\pm30^{\circ}$ (Cotrait *et al.*, 1984). In the case of tyrosinium residue 1, the χ^{21} value deviates slightly from the expected value.

The carboxyl group of residue 1 has the normal C–O dimensions expected for a non-ionized carboxyl group (Table 1), while residue 2 has C–O distances of 1.233 (4) and 1.274 (3) Å. These do not correspond to a delocalized sysytem, since the O–C–C angles are different [119.7 (3) and 114.6 (3)°]. In the zwitterionic amino acid form, the O–C–C

Figure 2 Packing diagram of the title structure, viewed down the *b* axis.

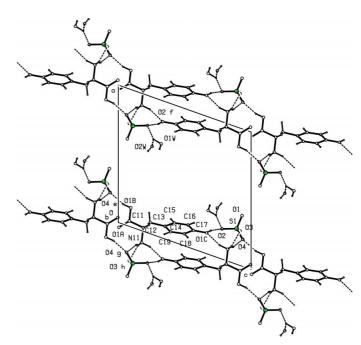
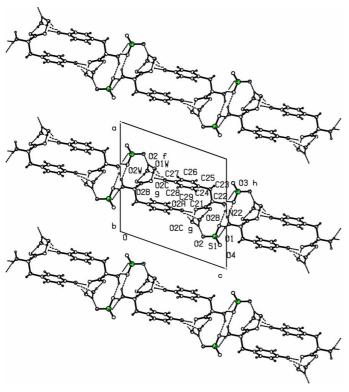


Figure 3

Packing diagram of the title structure, viewed down the *b* axis. For clarity, only tyrosinium residue 1, the sulfate anion and the water molecule are shown.


angles will be nearly the same, as found in L-leucine $[118.03 (10) \text{ and } 117.27 (9)^{\circ}]$ (Görbitz & Dalhus, 1996). The cationic form of residue 2 is further confirmed by a relatively strong hydrogen bond.

All O atoms of sulfate anions are involved in hydrogen bonding with tyrosinium residues and the water molecule (Table 2). The latter plays a vital role in stabilizing the structure (Fig. 2). The amino N atom of both the cation residues forms a normal $N-H\cdots O$ bond with the sulfate anion (Table 2). Intermolecular hydrogen bonding is observed in residue 1 involving the N atom and the 2_1 screw symmetryrelated terminal hydroxyl O atom, O^{η} . A bifurcated hydrogen bond is observed in residue 2 involving nitrogen with an O atom of the sulfate anion and a carboxyl O atom. In the case of residue 1, a class I hydrogen-bonding structure is observed, while in the case of residue 2, a class II hydrogen-bonding structure (Jeffrey & Saenger, 1991) is present.

A zigzag (Z1) head-to-tail sequence is observed in tyrosinium residue 2, connecting the residues related by a 2_1 screw parallel to *b* and its symmetry equivalents (Vijayan, 1988).

The O and one of the H atoms of the water molecule are disordered, with site-occupancy factors of 0.61(1) and 0.39(1). Besides the acceptor role, the disordered water molecule forms hydrogen bonds with the sulfate anion through the ordered H1W atom. The other disordered H atoms, H2W1 and H2W2, link the carboxyl O atoms of residue 2 into an infinite chain running along the *b* axis.

In the present study, the tyrosinium layers are interconnected, as an infnite chain, by interactions involving the sulfate ion and the disordered water molecule. Residue 1 runs as a ribbon along the a axis. These ribbons are interconnected,

Figure 4

Packing diagram of the title structure, viewed down the b axis. For clarity, only tyrosinium residue 2, the sulfate anion and the water molecule are shown.

as an infinite chain, by the sulfate anion along the *b* axis through the amino N atom (Fig. 3). Residue 2, also as a ribbon in the x = 1/2 plane, is linked through an $O-H \cdots O$ [$O2B-H2B \cdots O2C(1-x, y-1/2, 1-z)$] hydrogen-bonded interaction and runs as a helical structure along the *b* axis (Fig. 4). These ribbons [$O2B-H2B \cdots O2C-H2C \cdots O1W-H2W1 \cdots O2B(x, 1-y, z)$] are connected in a three-dimensional network by the disordered water molecule and by sulfate anions. The aggregation of the hydrophilic carboxyl, amino and sulfate groups are about the z = 0 plane with the phenyl rings about the z = 1/2 plane (Fig. 2).

Experimental

The title compound was crystallized by slow evaporation from an aqueous solution of L-tyrosine and sulfuric acid in a 2:1 stoichiometric ratio.

Crystal data

$2C_9H_{12}NO_3^+ \cdot O_4S^{2-} \cdot H_2O$	D_m measured by flotation using a
$M_r = 478.47$	mixture of carbon tetrachloride
Monoclinic, P2 ₁	and xylene
a = 13.473(2)Å	Mo $K\alpha$ radiation
b = 6.134(1) Å	Cell parameters from 25
c = 13.785 (3) Å	reflections
$\beta = 109.51 \ (2)^{\circ}$	$\theta = 11.3 - 14.2^{\circ}$
$V = 1073.8 (3) \text{ Å}^3$	$\mu = 0.22 \text{ mm}^{-1}$
Z = 2	T = 293 (2) K
$D_x = 1.480 \text{ Mg m}^{-3}$	Block, colorless
$D_m = 1.478 \text{ Mg m}^{-3}$	$0.5 \times 0.4 \times 0.3 \text{ mm}$

Data collection

Enraf–Nonis CAD-4 diffractometer	
ω –2 θ scans	
Absorption correction: ψ scan	
(North et al., 1968)	
$T_{\min} = 0.862, \ T_{\max} = 0.939$	
3011 measured reflections	
2455 independent reflections	
2322 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.084$ S = 1.072459 reflections 304 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0589P)^2 + 0.1816P]$ $where P = (F_o^2 + 2F_c^2)/3$ $R_{int} = 0.015$ $\theta_{max} = 25.0^{\circ}$ $h = -2 \rightarrow 16$ $k = -1 \rightarrow 7$ $l = -16 \rightarrow 15$ 3 standard reflections frequency: 60 min intensity decay: none

$(\Delta/\sigma)_{\text{max}} = 0.007$ $\Delta\rho_{\text{max}} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.24 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.011 (2) Absolute structure: Flack (1983); 488 Friedel pairs Flack parameter = 0.04 (8)

Table 1

Selected geometric parameters (Å, °).

O1A-C11	1.203 (3)	O2A-C21	1.233 (4)
O1B-C11	1.309 (3)	O2B-C21	1.274 (3)
O1A - C11 - O1B	126.8 (2)	O2A - C21 - O2B	125.7 (3)
O1A-C11-C12	123.5 (2)	O2A-C21-C22	119.7 (3)
O1B-C11-C12	109.74 (18)	O2 <i>B</i> -C21-C22	114.6 (3)
01A - C11 - C12 - N11	-2.0(4)	O2A - C21 - C22 - N22	-28.2(4)
N11-C12-C13-C14	-71.6(3)	N22-C22-C23-C24	176.4 (3)
	()		· · · · ·
C12-C13-C14-C15	133.1 (3)	C22-C23-C24-C25	-110.1(3)
C12-C13-C14-C19	-53.4 (3)	C22-C23-C24-C29	67.1 (4)

Table 2 Hydrogen-bonding geom

Hydrogen-bonding	geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1B-H1B\cdots O4^{i}$	0.82	1.81	2.600 (2)	161
$N11-H11A\cdotsO1C^{ii}$	0.89	2.19	2.875 (3)	133
$N11-H11B\cdots O4^{iii}$	0.89	1.85	2.727 (3)	170
N11−H11C···O3 ⁱⁱ	0.89	2.00	2.791 (3)	147
$O1C - H1C \cdot \cdot \cdot O2$	0.82	1.89	2.695 (3)	168
$O2B - H2B \cdot \cdot \cdot O2C^{iv}$	0.82	1.95	2.644 (3)	142
$N22-H22A\cdots O3^{v}$	0.89	1.93	2.792 (3)	163
$N22-H22B\cdotsO1^{vi}$	0.89	2.02	2.860 (4)	156
N22-H22C···O1	0.89	2.01	2.810 (3)	148
$N22-H22C\cdots O2A^{v}$	0.89	2.61	3.170 (3)	121
$O2C - H2C \cdot \cdot \cdot O1W$	0.82	1.77	2.514 (6)	151
$O2C - H2C \cdot \cdot \cdot O2W$	0.82	2.14	2.728 (7)	129
$O1W - H2W1 \cdots O2B^{iv}$	0.95	1.98	2.926 (7)	179
$O2W-H2W2\cdots O2A^{vii}$	0.84	1.74	2.577 (10)	177
$O1W-H1W\cdots O2^{iv}$	0.91	2.08	2.788 (6)	134
$O2W-H1W\cdots O2^{iv}$	0.96	2.08	2.975 (8)	154

Symmetry codes: (i) x, y, z - 1; (ii) $-x, \frac{1}{2} + y, 1 - z$; (iii) $-x, y - \frac{1}{2}, 1 - z$; (iv) $1 - x, y - \frac{1}{2}, 1 - z$; (v) $1 - x, \frac{1}{2} + y, 2 - z$; (vi) $1 - x, y - \frac{1}{2}, 2 - z$; (vii) $1 - x, \frac{1}{2} + y, 1 - z$.

The water molecule is disordered with site-occupation factors for O1W and O2W of 0.61 (1) and 0.39 (1), respectively, and these components were refined anisotropically. One of the H atoms, H1W, links the two disordered O atoms, while the other H atom is also disordered, H2W1 and H2W2 with site-occupation factors of 0.61 (1) and 0.39 (1). These water H atoms were located but were not refined. Other H atoms were fixed by geometric constraints and were allowed to ride on the attached atom.

214 Data collection: CAD-4

Software (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1999); software used to prepare material for publication: *SHELXL*97.

BS and RKR thank the Department of Science and Technology (DST), Government of India, for financial support.

References

- Bhat, T. N. & Vijayan, M. (1978). Acta Cryst. B34. 2556-2565.
- Cotrait, M., Bideau, J. P., Beurskens, G., Bosman, W. P. & Beurskens, P. T. (1984). Acta Cryst. C40, 1412–1416.
- Enraf-Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Frey, M. N., Koetzle, T. F., Lehmann, M. S. & Hamilton, W. C. (1973). J. Chem. Phys. 58, 2547–2556.
- Görbitz, C. H., & Dalhus, B. (1996). Acta Cryst. C52, 1754-1756.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, pp. 224–227. Berlin, Heidelberg, New York: Springer-Verlag.
- Lakshminarayanan, A. V., Sashisekaran, V. & Ramachandran, G. N. (1967). Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press.
- Mostad, A., Ottersen, T. & Rømming, C. (1971). Acta Chem. Scand. 25, 3549–3560.
- Mostad, A., Nissen, H. M. & Rømming, C. (1972). Acta Chem. Scand. 26, 3819– 3833.
- Mostad, A. & Rømming, C. (1973). Acta Chem. Scand. 27, 401-410.
- Mostad, A., Rømming, C. & Tressum, L. (1975). Acta Chem. Scand. Ser. B, 29,
- 171–176. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (1999). *PLATON* for Windows. University of Utrecht, The Netherlands.

Srinivasan, R. (1956). Acta Cryst. 9, 1039-1045.

Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.